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1 The Dynamic Factor Model (DFM)

Let Yi,t denote the monthly (daily) value of i-th economic variable at month (day) t. We remove

its trend by considering the k-month (k-day) change ∆kYi,t = Yi,t − Yi,t−k. We assume that the

dynamics of ∆kYi,t is governed by its p lags and a monthly (daily) unobserved common factor bt:

∆kYi,t = ci + λibt +

p∑
j=1

ρij∆kYi,t−nij + ui,t (1)

where ui,t are contemporaneously and serially uncorrelated white noises with variance σ2i . ni is

the number of months (days) per observational period. For instance, if Yi is collected every quarter,

then ni will be equal to 3 in the case of a monthly Business Cycle Index (BCI) bt and to 90, 91 or

92 for an index at the daily frequency. Hence, notice that ni is time-varying in the case of a daily

index for monthly and quarterly collected data. To simplify notations, it is assumed that ni is fixed

(as for an index at the monthly frequency), but in the state-space representation, it will be treated

as time-varying. As in Aruoba, Diebold, and Scotti (2009), lags of ∆kYi,t in multiple of ni are also

is also introduced in equation (1) since assuming persistence only at the monthly (daily) frequency

would not be appropriate as it would disappear prematurely for variables at a lower frequency.

Our Business Cycle Index (BCI) bt captures the cyclical dynamics of a Swiss canton or of the

national economy at the highest frequency available in the dataset (i.e., daily or monthly). This

variable follows an auto-regressive process of order r:

bt = ϕ1bt−1 + ...+ ϕrbt−r + ϵt (2)

where ϵt is assumed to be a white noise innovation with mean 0 and variance σ2ϵ = 1−
∑r

j=1 ϕ
2
j .

The model is thus composed of measurement equations (1) for each observed variable i = 1, ..., N

expressed in k-month (k-day) change, and a transition equation (2). The selection of order k

depends on the base frequency of observation and on the highest frequency available of the dataset.

We will discuss it in detail in next section. We will also derive the function form of measurement

that depends on the type of variable (stock versus flow) as well as its frequency. We will then show

how to cast the model in state-space form and how to implement it to extract the BCI bt.

1.1 Measurements for Flow and Stock Variables in the Monthly DFM

Let t = 1, ..., T index months, where T is the total number of months in the sample. Let Yi,qt

denote the quarterly value of i-th variable at monthy t. In case of a flow variable such at GDP, it

is equal to the sum of their unobserved monthly values Yi,t:

Yi,qt = Yi,t + Yi,t−1 + Yi,t−2

As the dependent variable of measurement equation (1) is expressed in k-months change, we now
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have to choose the order of change. A natural candidate would be k = 12 so that we work with

year-on-year change. As key advantages of such a choice, we obtain a smoother timeseries and we

do not need to filter out the seasonal pattern of the original data. The main drawback is that it

does not reflect the most recent information since year-on-year change is simply the sum of the

quarter-on-quarter changes over the past 12 quarters. The lowest order that we can select is k = 3

because the base frequency of observation is monthly. We thus face a tradeoff between smoothness

and responsiveness to new information. Since each quarter has always 3 months, we have:

∆k(q)Yi,qt = Yi,qt − Yi,qt−k(q) = ∆kYi,t +∆kYi,t−1 +∆kYi,t−2

where k(q) ∈ {1, 4} is consistent with k ∈ {3, 12}. In case of a stock variable such as employment,

we have Yi,qt = Yi,t such that ∆k(q)Yi,qt = ∆kYi,t.

Given that quarterly variables are only observed the last month of the quarter (i.e., in March, June,

September and December), the k(q)-quarter change of Yi,qt is given by

∆k(q)Yi,qt =


∑2

j=0∆kYi,t−j if i is a flow variable and t is the last month of the quarter

∆kYi,t, if i is a stock variable and t is the last month of the quarter

NA otherwise.

(3)

Thus, plugging (1) into (3) yields measurement for quarterly variables:

∆k(q)Yi,qt =



c∗i + λi
∑2

j=0 bt−j +
∑p

j=1 ρij∆k(q)Yi,qt−j + u∗i,t if i is a quarterly flow variable

that is observed

ci + λibt +
∑p

j=1 ρij∆k(q)Yi,qt−j + ui,t if i is a quarterly stock variable

that is observed

NA if i is a quarterly variable

that is not observed,

(4)

since ∆kYi,qt−j =
∑2

j=0∆kYi,t−3j is observed the last month of each quarter. Note that c∗i = 3ci

and u∗i,t =
∑2

j=0 ui,t−j . Even though u∗i,t follows a MA(2) process with variance σ∗2i = 3σ2i , it can

still be considered as a white noise since it is serially uncorrelated at the observational frequency.

Whether i is a stock or a flow variable is a stock or a flow, a monthy variable is always observed

and equal to Yi,t. Thus, given ∆kYi,mt = ∆kYi,t for all t, measurement (1) for monthly variables

becomes:

∆kYi,mt = ci + λibt +

p∑
j=1

ρij∆kYi,mt−j + ui,t (5)

where ∆kYi,qt−jni = ∆kYi,t−j since it is observed every month for all j = 1, ..., p.

The monthly model is characterized by transition equation (2) and measurement equations (4) and

(5).
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1.2 Measurements for Flow and Stock Variables in the Daily DFM

Let t = 1, ..., T index days, where T is the total number of days in the sample. To simplify the

analysis, we distribute the value of the 29th of Frebruary across days of every leap year such that

every year has the same number of days (i.e., 365). This surplus day adjustement implies that

every month and quarter have the same number of days over the years. Since the number of days

per month (quarter) change from one month (quarter) to the other, we choose the order of change

k = 365 so that we consider year-on-year changes.

Let Yi,qt denote the quarterly value of i-th variable observed the last day t of the quarter. In case

of a flow variable such at GDP, it is equal to the sum of their unobserved daily values Yi,t:

Yi,qt = Yi,t + Yi,t−1 + . . .+ Yi,t−d(qt)+1

where d(qt) = {90, 91, 92} is the the number of days in quarter qt. Since each quarter has the

same number of days as the same quarter of the preceding year (that is, d(qt) = d(qt − 4)), the

year-on-year change of quarterly flow variables is:

∆4Yi,qt = Yi,qt − Yi,qt−4 = ∆365Yi,t +∆365Yi,t−1 + . . .+∆365Yi,t−d(qt)+1

In case of a stock variable such as employment, we have Yi,qt = Yi,t such that ∆4Yi,qt = ∆365Yi,t.

Given that quarterly variables are only observed the last day of the quarter, the year-on-year change

of Yi,qt is given by

∆4Yi,qt =


∑d(qt)−1

j=0 ∆365Yi,t if i is a flow variable and t is the last day of the quarter

∆365Yi,t if i is a stock variable and t is the last day of the quarter

NA otherwise.

(6)

Thus, plugging (1) into (6) yields measurement for quarterly variables:

∆4Yi,qt =



c∗i + λi
∑d(qt)−1

j=0 bt−j +
∑p

j=1 ρij∆4Yi,qt−j + u∗i,t if i is a quarterly flow variable

that is observed

ci + λibt +
∑p

j=1 ρij∆4Yi,qt−j + ui,t if i is a quarterly stock variable

that is observed

NA if i is a quarterly variable

that is not observed,

(7)

since ∆4Yi,qt−j =
∑d(qt)−1

j=0 ∆365Yi,t−365j is observed the last day of each quarter. Note that

c∗i = d(qt)ci and u∗i,t =
∑d(qt)−1

j=0 ui,t−j . Even though u∗i,t follows a MA(d(qt) − 1) process with

variance σ∗2i = d(qt)σ
2
i , it can still be considered as a white noise since it is serially uncorrelated at

the observational frequency.

Let Yi,mt (Yi,wt) denote the monthly (weekly) value of i-th variable observed the last day t of the
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month (week). Similarly, measurement for monthly variables is given by:

∆12Yi,mt =



c∗i + λi
∑d(mt)−1

j=0 bt−j +
∑p

j=1 ρij∆12Yi,mt−j + u∗i,t if i is a monthly flow variable

that is observed

ci + λibt +
∑p

j=1 ρij∆12Yi,mt−j + ui,t if i is a monthly stock variable

that is observed

NA if i is a monthly variable

that is not observed,

(8)

where d(mt) = {28, 30, 31} is the the number of days in month mt, while measurement for weekly

variables becomes:1

∆52Yi,wt =



c∗i + λi
∑d(wt)−1

j=0 bt−j +
∑p

j=1 ρij∆52Yi,wt−j + u∗i,t if i is a weekly flow variable

that is observed

ci + λibt +
∑p

j=1 ρij∆52Yi,t−d(wt)j + ui,t if i is a weekly stock variable

that is observed

NA if i a weekly variable

that is not observed,

(9)

where d(wt) = 7 is the the number of days in week wt. Whether i is a stock or a flow variable is

a stock or a flow, a daily variable is always observed and equal to Yi,t. Thus, measurement (1) for

daily variables becomes:

∆365Yi,dt = ci + λibt +

p∑
j=1

ρij∆365Yi,dt−j + ui,t (10)

where ∆365Yi,dt−j = ∆365Yi,t−j since it is observed every day for all j = 1, ..., p.

The monthly model is characterized by transition equation (2) and measurement equations (7), (8),

(9) and (10).

2 State Space Representation

The dynamic factor model represented by equations (1), (3), and (5) can be formulated in a state-

space form as follows. Let yt denotes a (n× 1) vector of variables observed at date t. The dynamic

that governs yt can be described in terms of latent variables in a vector ξ (r × 1) called the state

vector. Hence, the state-space representation of the dynamic of y is given by the following system

1Note that the year-on-year change considered for weekly variables is ∆364Yi,t since there is gap of 364 = 7× 52
days between the sunday of a given week and that of the same week of the preceding year.
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of equations :

ξt+1 = Fξt + vt+1 (11)

yt = A′xt +H ′ξt + wt (12)

Where F , A′ andH ′ are matrices of parameters of dimension (r×r), (n×k) and (n×r), respectively,
and xt is a (k × 1) vector of exogenous variables. Equation 6 is known as the State Equation, and

equation 7 is known as the Observation Equation.

The vector vt (r × 1) and the vector wt (n× 1) are considered white noises :

E(vtv
′
τ ) =

Q , For t = τ

0 , Otherwise
(13)

E(wtw
′
τ ) =

R , For t = τ

0 , Otherwise
(14)

Where Q and R are (r × r) and (n× n) matrices, respectively. The noises vt and wt are assumed

to be uncorrelated across all periods :

E(vtw
′
τ ) = 0 , for all t and τ (15)

The fact that xt is exogenous implies that xt provides no information about ξt+s or wt+s for any

positive s beyond the information already contained in yt−1, yt−2, ..., y1.

3 Kalman Filter and Signal Extraction

The Kalman filter is an algorithm providing estimates of latent variables using observed measure-

ments over time by sequentially updating a linear projection for a dynamic system. It allows the

computation of accurate finite-sample forecasts, the exact likelihood function and VAR estimation

with parameters that change over time. Based on the observations contained in the vectors yt and

xt, the components’ values of the state vector are estimated through date t.

ξt+1|t ≡ E[ξt+1|Yt] (16)

where

Yt = (yt, yt−1, · · · , y1, xt, xt−1, · · · , x1)′ (17)

and E[ξt+1|Yt] denotes the linear projections of ξt+1 on Yt and a constant. The Kalman filter

computes these forecasts recursively , generating a serie of state vectors ξ1|0, ξ2|1, · · · , ξT |T−1.

Associated with each of these forecasts is a mean squared error (MSE) matrix, represented by the
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following (r × r) matrix :

Pt+1|t ≡ E[(ξt+1 − ξt+1|t)(ξt+1 − ξt+1|t)
′] (18)

The recursion starts with ξ1|0, which denotes a forecast of ξ1 based on no observations of y or x.

Thus, this is simply the unconditional mean of ξ1,

ξ1|0 = E(ξ1) (19)

with the associated MSE :

P1|0 = E{[ξ1 − E(ξ1)][ξ1 − E(ξ1)]
′} (20)

Following Hamilton (1994), the subsequent starting values are used to initiate the recursion :

ξ1|0 = 0

P1|0 the (r × r) matrix whose elements are expressed as a column vector is given by :

vec(P1|0) = [Ir2 − (F ⊗ F )]−1vec(Q)

Given the starting values ξ1|0 and P1|0, the next step is to compute ŷ1|0 and V ar(ŷ1|0).

ŷ1|0 = A′x1 +H ′ξ1|0 (21)

V ar(ŷ1|0) = Vy1|0 = H ′P1|0H +R (22)

For the remainder of the paper, ψt represents the surprise between the real value of the process

(yt) and the Kalman filter estimation (ŷt|t−1). This surprise could either come from measurement

noises wt or from the movement of ξt|t−1 to ξt|t during the updating step of the recursion.

Kt represents the gain matrix which will convert the surprise esperance of the movement of ξt.

For instance, using an extreme case where there is no measurement noises (wt = 0) then the gain

matrix Kt will completely allocate the surprise to the movement of ξt and thus the filter will be able

to retrieve perfectly the path of ξt as a result of perfect observations. The next stage is, therefore,

the computation of the surprise ψ1 and the gain matrix K1.

ψ1 = (y1 −A′x1 −H ′ξ1|0) (23)

K1 = P1|0H(H ′P1|0H +R)−1 (24)
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Finally, the estimate of the state vector ξ1|1 can be computed with the associated MSE P1|1.

ξ1|1 = ξ1|0 +K1ψ1 (25)

P1|1 = P1|0 −K1H
′P1|0 (26)

The calculations for t = 2,3,..., T all have the same steps so that it will be described in general

terms for step t.

Prediction stage

ξt|t−1 = Fξt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Q

ŷt|t−1 = A′xt +H ′ξt|t−1

V ar(ŷt|t−1) = Vyt|t−1
= H ′Pt|t−1H +R

Updating stage

ψt = (yt −A′xt −H ′ξt|t−1)

Kt = Pt|t−1H(H ′Pt|t−1H +R)−1

ξt|t = ξt|t−1 +Ktψt

Pt|t = Pt|t−1 −KtH
′Pt|t−1

Given the significant number of missing observations in the dataset, it is crucial to consider it in

the recursion. Following Aruoba, Diebold, and Scotti (2009), when there are no observations in yt,

updating does not take place, and thus the algorithm becomes :

ξt|t = Fξt−1|t−1 (27)

Pt|t = FPt−1|t−1F
′ +Q (28)

Furthermore, let’s assume that only a number n∗ (n > n∗ > 0) of observations are available in yt.

Then, the measurement equation needs to be adapted as follows :

y∗t = A′x∗t +H∗′ξt + w∗
t (29)

Where y∗t , x
∗
t , H

∗ and w∗
t are matrices and vectors with missing rows or columns corresponding to

the missing observations. Thus, the transformation made in equation 24 corresponds to creating a

matrix Γt which contains the n∗ rows of In associated with those of yt with an observed value such
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that :

y∗t = Γtyt

x∗t = Γtxt

H∗ = ΓtH

w∗
t = Γtwt

R∗
t = ΓtRtΓ

′
t

By performing those transformations, only the non-missing entries of yt are kept and used in the

updating stage of the algorithm. In the implementation, the three matrices in need of corrections

due to missing observations are Rt (n × n), ψt (n × 1) and Ht (r × n). For instance, let’s assume

that at time t, the observation for the second observed measurement is missing (n∗ = n−1). Then,

using the transformation described above, the corresponding rows and columns of Rt, ψt and Ht

are removed. Hence, the new dimensions of the aforementioned matrices are : Rt (n−1×n−1), ψt

(n− 1× 1) and Ht (r× n− 1). The procedure is analog when dealing with more than one missing

observation.

The value of ξt is of interest given its structural interpretation: the Business Cycle Index. There-

fore, the Kalman smoothing algorithm is used to obtain a better inference of the value of ξt based

on the full set of data collected YT = (yt, yt+1, ..., yT , xt, xt+1, ..., xT )
′.

Such inference is called the ”smoothed” estimate of ξt written as :

ξt|T ≡ E[ξt|YT ] (30)

with MSE :

Pt|T ≡ E[(ξt − ξt|T )(ξt − ξt|T )
′] (31)

Once again, the methodology proposed by Hamilton (1994) is used to compute the smoothed

estimates. As in any recursion, a starting value is needed, and for this purpose the Kalman filter is

run first in order to acquire the sequences {ξt|t}Tt=1, {ξt+1|t}T−1
t=0 , {Pt|t}Tt=1 and {Pt+1|t}T−1

t=0 . Then,

as a starting value for the algorithm, ξT |T as the last entry in {ξt|t}Tt=1 is chosen. The next stage

consists of computing the sequence {Jt}T−1
t=1 using :

Jt = Pt|tF
′P−1

t+1|t (32)

Finally, the smoothed estimates are computed as follows :

ξt|T = ξt|t + Jt(ξt+1|T − ξt+1|t) (33)
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Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t (34)

Proceeding backward through the sample in this fashion allows for the calculation of the complete

set of smoothed estimates : {ξt|T }Tt=1.

4 Maximum Likelihood Estimation

Thus far, it was assumed that the different matrices of parameters were known, which is evidently

not appropriate for the purpose of this paper. Thankfully, the Kalman filter is perfectly equipped to

address this issue. As a matter of fact, the computation of the log-likelihood is quite straightforward

given the multivariate Gaussian density function :

fY (y1i , · · · , yni) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2
(yi−µ)′Σ−1(yi−µ)

ln(

T∏
i=1

fY (y1i , · · · , yni)) = −Tn
2

ln(2π)− T

2
ln(|Σ|)− 1

2

T∑
i=1

(yi − µ)′Σ−1(yi − µ)

Then, the log-likelihood can be computed as (taking into consideration that n may not be constant

across periods because of missing observations) :

ln(
T∏
i=1

fYt|XtYt−1
(yt|xt,Yt−1)) = −1

2

T∑
i=1

(ni ∗ ln(2π) + ln(det(H ′Pt|t−1H +R))

+ (yt −A′xt −H ′ξ̂t|t−1)
′(H ′Pt|t−1H +R)−1(yt −A′xt −H ′ξ̂t|t−1)

Or using previous notations :

ln(
T∏
i=1

fYt|XtYt−1
(yt|xt,Yt−1)) = −1

2

T∑
i=1

ni ln(2π) + ln(det(Viyt|t−1
))

+ ψ′
t(Viyt|t−1

)−1ψt (35)

Note that if all observations of yt are missing then the contribution of period t to the log-likelihood

will be equal to zero.

5 Data

The estimation problem faced to compute the Business Cycle Index is substantial. A significant

number of observations is involved (especially for the daily Business Cycle Index), and a constraint

regarding the number of coefficients that can be estimated with MLE requires to think the process

through. We base the Business Cycle Index on a relatively small amount of underlying indicators
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all based on hard data (i.e. seven indicators) in order to reduce the number of parameters that

need to be estimated by maximum likelihood. Note that the parameters are estimated individually

for each of the 26 Swiss cantons.

5.1 Cantonal Data for the Monthly Business Cycle Index

The monthly cantonal variables are ordered first in the state-space representation and are the

following: registered unemployed workers (1990M01-today, State Secretariat for Economic Affairs),

industrial production (2010M01-today, own estimates), exports of goods (1995M01-today, Federal

Office for Customs and Border Security), consumer spending (2011-today, Worldline and Monitoring

Consumption) and vacancies (quarterly 1998M01-today, Swiss Job Tracker). The only quarterly

stock variable is employment (1995Q3-today, own estimates) and is ordered sixth in the state-

space representation. The only quarterly flow variable is real GDP (1997Q3-today, own estimates)

which is also the target variable for the nowcasting exercise, and is ordered last in the state-space

representation. All the variables are calendar- and outlier-adjusted using the X-13ARIMA-SEATS.

As we work with year-on-year growth rates, we do not need to make a seasonal adjustment to the

data.2 Moreover, we check that very time-series is stationary by running a Dickey-Fuller test.1

5.2 Data for the Daily Business Cycle Index

The only daily variable is consumer spending and is ordered first in the state-space representation.

The only weekly variable is the number of vacancies and is a stock variable. It is ordered sec-

ond in the state-space representation. The only monthly stock variable is registered unemployed

workers and is ordered third in the state-space representation. The monthly flow variables are

industrial production and exports of goods. They are ordered fourth and fifth in the state-space

representation. The quarterly stock variable is employment and is ordered sixth in the state-space

representation. The only quarterly flow variable is real GDP and is ordered last in the state-space

representation. When we move to the weekly index, consumer spending as well as vacancies are

available at the weekly frequency and thus become weekly variables. All the variables are calendar-

and outlier-adjusted using the X-13ARIMA-SEATS. As we work with year-on-year growth rates, we

do not need to make a seasonal adjustment to the data.3 Moreover, we check that very time-series

is stationary by running a Dickey-Fuller test.1

2For operational reasons, we take time-series already adjusted by data providers.
1The null hypothesis being non-stationary, all the tests resulted in the rejection of the null hypothesis with a

p-value smaller than 0.01.
3For operational reasons, we take time-series already adjusted by data providers.
1The null hypothesis being non-stationary, all the tests resulted in the rejection of the null hypothesis with a

p-value smaller than 0.01.
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6 Model implementation

We take several further decisions to reduce the number of parameters that need to be estimated by

maximum likelihood and to ease computation for signal extraction. Firstly, we make the simplifying

assumption that the Business Cycle Index and the various observed variables follow first-order

dynamics (p = r = 1). Secondly, we remove constants in measurement equations by standardizing

all k-month (k-day) changes.4 Thirdly, an Harvey Accumulator (Harvey, 1990) for each frequency

f ∈ {w,m, q} denoted by Zf,t is implemented to reduce the size of the state vector by summarizing

the necessary information required to construct observed flow variables. It is defined as follows :

zft = ζft z
f
t−1 + bt (36)

= ζft z
f
t−1 + ϕbt−1 + ϵt (37)

where ζf,t is defined as :

ζft =

{
0 if t is the last day of the observational period f

1 otherwise.

6.1 Monthly Business Cycle Index

The equations that defines the monthly model are the state equation :[
bt+1

zmt+1

]
︸ ︷︷ ︸
=ξt+1

=

[
ϕ 0

ϕ ζmt

]
︸ ︷︷ ︸

=F

[
bt

zmt

]
︸ ︷︷ ︸
=ξt

+

[
ϵt+1

ϵt+1

]
︸ ︷︷ ︸
=vt+1

, (38)

and the observation equation :

∆kY1,mt

∆kY2,mt

∆kY3,mt

∆kY4,mt

∆k(q)Y5,qt

∆k(q)Y6,qt

∆k(q)Y7,qt


︸ ︷︷ ︸

=yt

=



ρ1 0 0 0 0 0 0

0 ρ2 0 0 0 0 0

0 0 ρ3 0 0 0 0

0 0 0 ρ4 0 0 0

0 0 0 0 ρ5 0 0

0 0 0 0 0 ρ6 0

0 0 0 0 0 0 ρ7


︸ ︷︷ ︸

=A′



∆kY1,mt−1

∆kY2,mt−1

∆kY3,mt−1

∆kY4,mt−1

∆k(q)Y5,qt−1

∆k(q)Y6,qt−1

∆k(q)Y7,qt−1


︸ ︷︷ ︸

=xt

+



λ1 0

λ2 0

λ3 0

λ4 0

λ5 0

λ6 0

0 λ∗6


︸ ︷︷ ︸

=H′

[
bt

zmt

]
︸ ︷︷ ︸
=ξt

+



u1,t

u2,t

u3,t

u4,t

u5,t

u6,t

u∗7,t


︸ ︷︷ ︸
=wt

, (39)

with : [
vt+1

wt

]
∼ N

([
02x1

07x1

]
,

[
Q 0

0 R

])
, (40)

4Since b = ui = u∗
i = 0 by assumption, it can be easily shown that all measurement equations remain valid after

standardization.
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where Q = diag(1− ϕ2, 1− ϕ2) and R = diag(σ21, σ
2
2, σ

2
3, σ

2
4, σ

2
5, σ

2
6, σ

2∗
7 ).

6.2 Daily Business Cycle Index

The equations that defines the daily model are the state equation :bt+1

zmt+1

zqt+1


︸ ︷︷ ︸
=ξt+1

=

ϕ 0 0

ϕ ζmt 0

ϕ 0 ζqt


︸ ︷︷ ︸

=F

 btzmt
zqt


︸ ︷︷ ︸
=ξt

+

ϵt+1

ϵt+1

ϵt+1


︸ ︷︷ ︸
=vt+1

, (41)

and the observation equation :

∆365Y1,dt

∆52Y2,wt

∆12Y3,mt

∆12Y4,mt

∆12Y5,mt

∆4Y6,qt

∆4Y7,qt


︸ ︷︷ ︸

=yt

=



ρ1 0 0 0 0 0 0

0 ρ2 0 0 0 0 0

0 0 ρ3 0 0 0 0

0 0 0 ρ4 0 0 0

0 0 0 0 ρ5 0 0

0 0 0 0 0 ρ6 0

0 0 0 0 0 0 ρ7


︸ ︷︷ ︸

=A′



∆365Y1,dt−1

∆52Y2,wt−1

∆12Y3,mt−1

∆12Y4,mt−1

∆12Y5,mt−1

∆4Y6,qt−1

∆4Y7,qt−1


︸ ︷︷ ︸

=xt

+



λ1 0 0

λ2 0 0

λ3 0 0

0 λ∗4 0

0 λ∗5 0

λ6 0 0

0 0 λ∗7


︸ ︷︷ ︸

=H′

 btzmt
zqt


︸ ︷︷ ︸
=ξt

+



u1,t

u2,t

u3,t

u∗4,t
u∗5,t
u6,t

u∗7,t


︸ ︷︷ ︸
=wt

, (42)

with : [
vt+1

wt

]
∼ N

([
03x1

07x1

]
,

[
Q 0

0 R

])
, (43)

where Q = diag(1− ϕ2, 1− ϕ2, 1− ϕ2) and R = diag(σ21, σ
2
2, σ

2
3, σ

2∗
4 , σ

2∗
5 , σ

2
6, σ

2∗
7 ).

6.3 Daily Business Cycle Index with Weekly Data Only

The equations that defines the daily model are the state equation :
bt+1

zwt+1

zmt+1

zqt+1


︸ ︷︷ ︸
=ξt+1

=


ϕ 0 0 0

ϕ ζwt 0 0

ϕ 0 ζmt 0

ϕ 0 0 ζqt


︸ ︷︷ ︸

=F


bt

zwt

zmt

zqt


︸ ︷︷ ︸
=ξt

+


ϵt+1

ϵt+1

ϵt+1

ϵt+1


︸ ︷︷ ︸
=vt+1

, (44)
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and the observation equation :

∆52Y1,wt

∆52Y2,wt

∆12Y3,mt

∆12Y4,mt

∆12Y5,mt

∆4Y6,qt

∆4Y7,qt


︸ ︷︷ ︸

=yt

=



ρ1 0 0 0 0 0 0

0 ρ2 0 0 0 0 0

0 0 ρ3 0 0 0 0

0 0 0 ρ4 0 0 0

0 0 0 0 ρ5 0 0

0 0 0 0 0 ρ6 0

0 0 0 0 0 0 ρ7


︸ ︷︷ ︸

=A′



∆52Y1,dt−1

∆52Y2,wt−1

∆12Y3,mt−1

∆12Y4,mt−1

∆12Y5,mt−1

∆4Y6,qt−1

∆4Y7,qt−1


︸ ︷︷ ︸

=xt

+



λ1 0 0 0

0 λ∗2 0 0

λ3 0 0 0

0 0 λ∗4 0

0 0 λ∗5 0

λ6 0 0 0

0 0 0 λ∗7


︸ ︷︷ ︸

=H′


bt

zwt

zmt

zqt


︸ ︷︷ ︸
=ξt

+



u1,t

u2,t

u3,t

u∗4,t
u∗5,t
u6,t

u∗7,t


︸ ︷︷ ︸
=wt

,(45)

with : [
vt+1

wt

]
∼ N

([
03x1

07x1

]
,

[
Q 0

0 R

])
, (46)

where Q = diag(1− ϕ2, 1− ϕ2, 1− ϕ2) and R = diag(σ21, σ
2
2, σ

2
3, σ

2∗
4 , σ

2∗
5 , σ

2
6, σ

2∗
7 ).

6.4 Model estimation

Using homemade R codes and this methodology, the estimation process is described below. First,

start-up coefficients’ values for the stock variables and flow variables at the frequency of the Business

Cycle Index are estimated by running the Kalman filter once without using flow variables at a lower

frequency than the index. The first step, which was just presented, provides the first estimate for all

the coefficients of stock variables and flow variables at the frequency of the Business Cycle Index in

the observation equation and all the coefficients of the state equation. Moreover, a first estimation

of the business cycle b∗t is extracted.

Then, to obtain initial values for the coefficients associated with the remaining flow variables in

the observation equation, a simple OLS regression of the flow variables on the first estimate of the

business cycle and the lag of the said variables is run.

yit = λib∗t + ρiyit−1 + ϵit (47)

At the end of this second stage, initial values for all the parameters of the model are available.

Finally, an estimation using all the model’s coefficients jointly is made before extracting the final

smoothed estimate of the Business Cycle Index.

It is worth noting that to perform the maximum likelihood estimation, two optimization algorithms

are used alternatively to increase the chances of reaching a global maximum rather than a local one.

This is due to algorithms tending to identify a path in which they will be locked until convergence.

Thus, using two algorithms that do not use the same method alleviate this problem. The two

algorithms used are part of the optimx R package and are named ”nlminb” and ”Nelder-Mead”.
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Appendix

A.5 Data

Most of the data used to extract the BCI are expressed in real terms, except cantonal exports and

consumer spending at the national and cantonal levels. We deflate these variables in the following

way.

Comuputing deflator for cantonal exports. We compute the national deflator for exports

of goods as P x
t =

Xnom
t

Xreal
t

, where Xt are data provided by the The Federal Office for Customs and

Border Security. We assume that P x
t = P x

c,t to to express in real terms cantonal exports. This is a

good approximation since (1) the underlying data are the same at the cantonal and national level;

and (2) the underlying macro shocks driving the dynamics of the deflator should be the same at the

cantonal and national level. Indeed, we are not interested in the evolution of real cantonal exports

and not their levels.

Comuputing deflator for consumer spending. Data on consumer spending from Worldline

and Monitoring Consumption Switzerland are available for 12 categories. We match each of these

categories with monthly price data available from the Swiss Federal Statisitical Office (SFSO):
Table xxx: Correspondance MCS

NOGA Merchant category Statistics SFSO ID Category Weight 2019 (%)

4719 / 474-479 Retail: Other goods Retail Trade Turnover Statistics NOGA 4719 / 474-479 Retail sale of non-food 36.1

4711 / 472 Retail: Food, beverage, tobacco Swiss Consumer Price Index COICOP 100-1 Food and non-alcoholic beverages 29.2

56 Food and beverage services Swiss Consumer Price Index COICOP 100-11001 Catering services 7.8

473 Retail: Fuel stations Swiss Consumer Price Index COICOP 100-7105 Fuel 7.8

55 Accommodation Swiss Consumer Price Index COICOP 100-11170 Accommodation 5.6

- Professional services Swiss Consumer Price Index COICOP 110-102 Services 3.3

49-51 Transport services Swiss Consumer Price Index COICOP 100-7200 Transport services 3.3

90-93 Entertainment and sports Swiss Consumer Price Index COICOP 100-9350 Recreational and cultural services 2.2

94-96 Personal services Swiss Consumer Price Index COICOP 100-12 Other goods and services 1.5

86 Human health services Swiss Consumer Price Index COICOP 100-6 Healthcare 1.5

45 Motor vehicles Swiss Consumer Price Index COICOP 100-7002 Purchase of cars motorcycles, bicycles 1.1

- Other Swiss Consumer Price Index COICOP 100-100 Total 0.8

Notes: bla bla bla.

For the category of non-food retail, we use the deflator computed from the Retail Trade Turnover

Statistics even though the publication delay is greater than with Swiss Consumer price index (i.e

approximately 4 months). For the category of food, beverage and tobacco from the retail sector,

we use the consumer price index that that does not include alcoholic beverages and tobacco since

this aggregate does not exist.5 For the category of Motor vehicles, we use the consumer price index

without use and maintenance of cars, motorcycles, bicycles since it include the volatile component

of fuel. Based the input-output tables, the category of Personal services is matched with COICOP

12 ”‘Other goods and services”’.

5The weight in the Swiss CPI is equal is much larger for Food and non-alcoholic beverages (11.0%) than for
Alcoholic beverages and tobacco (2.9%).
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The deflator used to express data of consumer spending from Worldline and Monitoring Consump-

tion Switzerland in real terms is computed as follows:

Pt =
12∑
i=1

ωi,tPi,mt

where ωi,t is the time-t weight associated with merchant category i and Pi,mt is the monthly price

index taken from Table xxx. When data are not avalaible, we use an ARIMA model to forecast

prices. Note that the weights are computed at the observational frequency of data on concumer

spending since there is a strong seasonal pattern. The deflator is seasonally adjusted in a second

step.

The same deflator is used for the national BCI and all cantonal BCI (i.e. Pc,t = Pt) because data

on weights are not available for the cantons (neither for prices).
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